
Unit-3: Python interaction with SQLite:

3.1 Module: Concepts of module and Using modules in python.

 3.1.1 Setting PYTHONPATH, Concepts of Namespace and Scope

 3.1.2 Concepts of Packages in python

3.2 Importing sqlite3 module

 3.2.1 connect () and execute() methods.

 3.2.2 Single row and multi-row fetch (fetchone(), fetchall())

 3.2.3 Select, Insert, update, delete using execute () method.

 3.2.4 commit () method.

What is a function in Python?
In Python, a function is a group of related statements that performs a specific task.
Functions help break our program into smaller and modular chunks.
As our program grows larger and larger, functions make it more organized and manageable.
Furthermore, it avoids repetition and makes the code reusable.

Syntax of Function:

def function_name(parameters):
 """docstring"""

 statement(s)

Above shown is a function definition that consists of the following components.

1. Keyword def that marks the start of the function header.
2. A function name to uniquely identify the function.
3. Parameters (arguments) through which we pass values to a function. They are optional.
4. A colon (:) to mark the end of the function header.
5. Optional documentation string (docstring) to describe what the function does.
6. One or more valid python statements that make up the function body. Statements must have the same indentation

level (usually 4 spaces).
7. An optional return statement to return a value from the function.

Example of a function:

def greet(name):

 """ comment: This function greets to the person passed in as a parameter """

 print("Hello, " + name + ". Good morning!")

How to call a function in python?
Once we have defined a function, we can call it from another function, program or even the Python prompt. To call a
function we simply type the function name with appropriate parameters.

>>> greet('Paul')

Hello, Paul. Good morning!

Docstrings

The first string after the function header is called the docstring and is short for documentation string.

It is briefly used to explain what a function does.

The return statement

The return statement is used to exit a function and go back to the place from where it was called.

Syntax of return:

return [expression_list]

This statement can contain an expression that gets evaluated and the value is returned. If there is no expression in

the statement or the return statement itself is not present inside a function, then the function will return the None object.

For example:

>>> print(greet("May"))
Hello, May. Good morning!

None

Here, None is the returned value since greet() directly prints the name and no return statement is used.

Example of return

def absolute_value(num):

"""comment :This function returns the absolute value of the entered number"""

 if num >= 0:
 return num
 else:

 return -num
print(absolute_value(2))

print(absolute_value(-4))

Output

2

4

How Function works in Python?

Types of Functions

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.

2. User-defined functions - Functions defined by the users themselves.

3.1 Module: Concepts of module and Using modules in python.

Python Modules

Modules refer to a file containing Python statements and definitions.

A file containing Python code, for example: example.py, is called a module, and its module name would

be example.

We use modules to break down large programs into small manageable and organized files.
Furthermore, modules provide reusability of code.

We can define our most used functions in a module and import it, instead of copying their definitions into different
programs.

Let us create a module. Type the following and save it as example.py.

Python Module example

def add(a, b):

 """comment : This program adds two numbers and return the result"""

 result = a + b

 return result

#addition.py and my.py

Here, we have defined a function add() inside a module named example. The function takes in two numbers and

returns their sum.

How to import modules in Python?

We can import the definitions inside a module to another module or the interactive interpreter in Python.

We use the import keyword to do this. To import our previously defined module example, we type the following in the

Python prompt.

>>> import example

This does not import the names of the functions defined in example directly in the current symbol table. It only imports
the module name example there.

Using the module name we can access the function using the dot . operator. For example:

>>> example.add(4,5.5)
9.5

Python has tons of standard modules.
You can check out the full list of Python standard modules and their use cases.
These files are in the Lib directory inside the location where you installed Python.
Standard modules can be imported the same way as we import our user-defined modules.
There are various ways to import modules.

Python import statement

We can import a module using the import statement and access the definitions inside it using the dot operator as
described above. Here is an example.

import statement example

to import standard module math

import math

print("The value of pi is", math.pi)

When you run the program, the output will be:

The value of pi is 3.141592653589793

Import with renaming
We can import a module by renaming it as follows:

import module by renaming it

import math as m

print("The value of pi is", m.pi)

We have renamed the math module as m.
This can save us typing time in some cases.
Note that the name math is not recognized in our scope.
Hence, math.pi is invalid, and m.pi is the correct implementation.

Python from...import statement
We can import specific names from a module without importing the module as a whole. Here is an example.

import only pi from math module

from math import pi

print("The value of pi is", pi)

#fromImport.py

Here, we imported only the pi attribute from the math module.
In such cases, we don't use the dot operator. We can also import multiple attributes as follows:

>>> from math import pi, e

>>> pi

3.141592653589793

>>> e

2.718281828459045

Import all names
We can import all names(definitions) from a module using the following construct:

import all names from the standard module math

from math import *

print("The value of pi is", pi)

Here, we have imported all the definitions from the math module.
This includes all names visible in our scope except those beginning with an underscore(private definitions).
Importing everything with the asterisk (*) symbol is not a good programming practice.
This can lead to duplicate definitions for an identifier. It also hampers the readability of our code.

Python Module Search Path

While importing a module, Python looks at several places. Interpreter first looks for a built-in module. Then(if built-in
module not found), Python looks into a list of directories defined in sys.path. The search is in this order.

• The current directory.

• PYTHONPATH (an environment variable with a list of directories).

• The installation-dependent default directory.

>>> import sys

>>> sys.path

['',

'C:\\Python33\\Lib\\idlelib',

'C:\\Windows\\system32\\python33.zip',

'C:\\Python33\\DLLs',

'C:\\Python33\\lib',

'C:\\Python33',

'C:\\Python33\\lib\\site-packages']

We can add and modify this list to add our own path.

The dir() built-in function

We can use the dir() function to find out names that are defined inside a module.
For example, we have defined a function add() in the module example that we had in the beginning.
We can use dir in example module in the following way:

>>> dir(example)

['__builtins__',

'__cached__',

'__doc__',

'__file__',

'__initializing__',

'__loader__',

'__name__',

'__package__',

'add']

#dir_math.py

Here, we can see a sorted list of names (along with add). All other names that begin with an underscore are default
Python attributes associated with the module (not user-defined).

For example, the __name__ attribute contains the name of the module.

>>> import example

>>> example.__name__

'example'

All the names defined in our current namespace can be found out using the dir() function without any arguments.

>>> a = 1

>>> b = "hello"

>>> import math

>>> dir()

['__builtins__', '__doc__', '__name__', 'a', 'b', 'math', 'pyscripter']

3.1.1 Setting PYTHONPATH, Concepts of Namespace and Scope

What is PYTHONPATH environment variable in Python?

PYTHONPATH is an environment variable which you can set to add additional directories where python will look for
modules and packages.

For most installations, you should not set these variables since they are not needed for Python to run.

Python knows where to find its standard library.

The only reason to set PYTHONPATH is to maintain directories of custom Python libraries that you do not want to
install in the global default location (i.e., the site-packages directory).

Concepts of Namespace and Scope

In python we deal with variables, functions, libraries and modules etc.

There is a chance the name of the variable you are going to use is already existing as name of another variable or as
the name of another function or another method.

In such scenario, we need to learn about how all these names are managed by a python program.

A name in Python is just a way to access a variable like in any other languages.

However, Python is more flexible when it comes to the variable declaration. You can declare a variable by just
assigning a name to it.

You can use names to reference values.
 num = 5
 str = 'Z'
 seq = [0, 1, 1, 2, 3, 5]

You can even assign a name to a function.
 def function():
 print('It is a function.')

 foo = function
 foo()

You can also assign a name and then reuse it. Check the below example; it is alright for a name to point to different
values.

test = -1
print("type <test> :=", type(test))
test = "Pointing to a string now"
print("type <test> :=", type(test))
test = [0, 1, 1, 2, 3, 5, 8]
print("type <test> :=", type(test))

What are namespaces in Python?

A namespace is a simple system to control the names in a program. It ensures that names are unique and won’t lead
to any conflict.

Also, add to your knowledge that Python implements namespaces in the form of dictionaries. It maintains a name-to-
object mapping where names act as keys and the objects as values. Multiple namespaces may have the same name
but pointing to a different variable. Check out a few examples of namespaces for more clarity.

A namespace in Python is a collection of underlying keywords and objects that Python has within memory. It’s a very
common concept in Object-Oriented Programming.

dictionary : https://www.programiz.com/python-programming/dictionary

To simply put it, a namespace is a collection of names.

A namespace containing all the built-in names is created when we start the Python interpreter and exists as long as

the interpreter runs.

This is the reason that built-in functions like id(), print() etc. are always available to us from any part of the program.

Each module creates its own global namespace.

These different namespaces are isolated. Hence, the same name that may exist in different modules does not collide.

Modules can have various functions and classes. A local namespace is created when a function is called, which has

all the names defined in it. Similar is the case with class. The following diagram may help to clarify this concept.

In a Python program, there are four types of namespaces:

1. Built-In
2. Global
3. Enclosing
4. Local

Local Namespace: All the names of the functions and variables declared by a program are held in this
 namespace. This namespace exists as long as the program runs.

As you learned in functions, the interpreter creates a new namespace whenever a function executes.

That namespace is local to the function and remains in existence until the function terminates.

Functions don’t exist independently from one another only at the level of the main program. You can also define one

function inside another:

 1>>> def f():

 2... print('Start f()')

 3...

 4... def g():

 5... print('Start g()')

 6... print('End g()')

 7... return

 8...

 9... g()

10...

11... print('End f()')

12... return

13...

14

15>>> f()

16Start f()

17Start g()

18End g()

19End f()

In this example, function g() is defined within the body of f().

Here’s what’s happening in this code:

• Lines 1 to 12 define f(), the enclosing function.

• Lines 4 to 7 define g(), the enclosed function.

• On line 15, the main program calls f().

• On line 9, f() calls g().

When the main program calls f(), Python creates a new namespace for f().

Similarly, when f() calls g(), g() gets its own separate namespace.

The namespace created for g() is the local namespace, and the namespace created for f() is the enclosing

namespace.

Each of these namespaces remains in existence until its respective function terminates.

Python might not immediately reclaim the memory allocated for those namespaces when their functions terminate,

but all references to the objects they contain cease to be valid.

Global Namespace: The global namespace contains any names defined at the level of the main program.

Python creates the global namespace when the main program body starts, and it remains in existence until the

interpreter terminates.

The interpreter also creates a global namespace for any module that your program loads with the import statement.

This namespace holds all the names of functions and other variables that are included in the modules being used in
the python program. It encompasses all the names that are part of the Local namespace.

Built-in Namespace: The built-in namespace contains the names of all of Python’s built-in objects. These are

available at all times when Python is running.

This is the highest level of namespace . It encompasses Global Namespace which in turn encompasses the local
namespace.

example: dir(__builtins__)

note :

[Some functions like print(), id() are always present, these are built

When a user creates a module, a global namespace gets created, later the creation of local functions creates the local
namespace.
The built-in namespace encompasses the
namespace.]

Python Variable Scope

The namespace has a lifetime when it is available. That is also called the scope. Also the scope will depend on the coding re

where the variable or object is located. You can see in the below program how the variables declared in an inne

to the outer loop but not vice-versa.

Although there are various unique namespaces defined, we may not be able to access all of them from every part of

the program. The concept of scope comes into play.

A scope is the portion of a program from where a namespace can be accessed directly without any prefix.

At any given moment, there are at least three nested scopes.

1. Scope of the current function which has local names

2. Scope of the module which has global names

3. Outermost scope which has built-in names

When a reference is made inside a function, the name is searched in the local namespace, then in the global
namespace and finally in the built-in namespace.
If there is a function inside another function, a new scope is nested inside the local

Some functions like print(), id() are always present, these are built-in namespaces.

When a user creates a module, a global namespace gets created, later the creation of local functions creates the local

encompasses the global namespace and the global namespace encompasses the

The namespace has a lifetime when it is available. That is also called the scope. Also the scope will depend on the coding re

where the variable or object is located. You can see in the below program how the variables declared in an inne

Although there are various unique namespaces defined, we may not be able to access all of them from every part of

the program. The concept of scope comes into play.

ram from where a namespace can be accessed directly without any prefix.

At any given moment, there are at least three nested scopes.

Scope of the current function which has local names

Scope of the module which has global names

in names

When a reference is made inside a function, the name is searched in the local namespace, then in the global
in namespace.

If there is a function inside another function, a new scope is nested inside the local scope.

When a user creates a module, a global namespace gets created, later the creation of local functions creates the local

and the global namespace encompasses the local

The namespace has a lifetime when it is available. That is also called the scope. Also the scope will depend on the coding region

where the variable or object is located. You can see in the below program how the variables declared in an inner loop are available

Although there are various unique namespaces defined, we may not be able to access all of them from every part of

ram from where a namespace can be accessed directly without any prefix.

When a reference is made inside a function, the name is searched in the local namespace, then in the global

Python searches for the following namespaces in the order shown:

1. Local: If you refer to x inside a function, then the interpreter first searches for it in the innermost scope that’s

local to that function.

2. Enclosing: If x isn’t in the local scope but appears in a function that resides inside another function, then the

interpreter searches in the enclosing function’s scope.

3. Global: If neither of the above searches is fruitful, then the interpreter looks in the global scope next.

4. Built-in: If it can’t find x anywhere else, then the interpreter tries the built-in scope.

Example of Scope and Namespace in Python

5. def outer_function():
6. b = 20
7. def inner_func():
8. c = 30
9. a = 10

Here, the variable a is in the global namespace.

Variable b is in the local namespace of outer_function() and c is in the nested local

namespace of inner_function().

When we are in inner_function(), c is local to us, b is nonlocal and a is global.

We can read as well as assign new values to c but can only

read b and a from inner_function().

If we try to assign as a value to b, a new variable b is created in the local namespace which is

different than the nonlocal b.

The same thing happens when we assign a value to a.

However, if we declare a as global, all the reference and assignment go to the global a.

Similarly, if we want to rebind the variable b, it must be declared as nonlocal.

The following example will further clarify this.

def outer_function():

 a = 20

 def inner_function():

 a = 30

 print('a =', a)

 inner_function()

 print('a =', a)

a = 10

outer_function()

print('a =', a)

As you can see, the output of this program is

a = 30

a = 20

a = 10

In this program, three different variables a are defined in separate namespaces and accessed accordingly. While in

the following program,

def outer_function():

 global a

 a = 20

 def inner_function():

 global a

 a = 30

 print('a =', a)

 inner_function()

 print('a =', a)

a = 10

outer_function()

print('a =', a)

The output of the program is.

a = 30

a = 30

a = 30

Here, all references and assignments are to the global a due to the use of keyword global.

3.1.2 Concepts of Packages in python

We organize a large number of files in different folders and subfolders based on some criteria, so that we can find
and manage them easily.
In the same way, a package in Python takes the concept of the modular approach to next logical level.

As you know, a module can contain multiple objects, such as classes, functions, etc.

A package can contain one or more relevant modules. Physically, a package is actually a folder containing one or
more module files.

Let's create a package named mypackage, using the following steps:

• Create a new folder named D:\MyApp.

• Inside MyApp, create a subfolder with the name 'mypackage'.

• Create an empty __init__.py file in the mypackage folder.

• Using a Python-aware editor like IDLE, create modules greet.py and functions.py with the following code:

greet.py

def SayHello(name):
 print("Hello ", name)

functions.py

def sum(x,y):
 return x+y

def average(x,y):
 return (x+y)/2

def power(x,y):
 return x**y

That's it.
We have created our package called mypackage.

The following is a folder structure:

Importing a Module from a Package

Now, to test our package, navigate the command prompt to the MyApp folder and invoke the Python

prompt from there.

D:\ D:\MyApp>python,
python
Import the functions module from the mypackage package and call its power() function.

>>> from mypackage import functions

>>> functions.power(3,2)

9

It is also possible to import specific functions from a module in the package.

>>> from mypackage.functions import sum

>>> sum(10,20)

30

>>> average(10,12)

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

NameError: name 'average' is not defined>>> 'av

note : https://realpython.com/python-modules-packages/

video : https://youtu.be/urE5MuYd-YM

__init__.py

The package folder contains a special file called __init__.py, which stores the package's content. It

serves two purposes:

1. The Python interpreter recognizes a folder as the package if it contains __init__.py file.

2. __init__.py exposes specified resources from its modules to be imported.

An empty __init__.py file makes all functions from the above modules available when this package is

imported. Note that __init__.py is essential for the folder to be recognized by Python as a package. You

can optionally define functions from individual modules to be made available.

3.2 Importing sqlite3 module

SQLite in general is a server-less database that you can use within almost all programming languages
including Python. Server-less means there is no need to install a separate server to work with SQLite so you
can connect directly with the database.

SQLite is a lightweight database that can provide a relational database management system with zero-
configuration because there is no need to configure or set up anything to use it.

To use sqlite3 module, you must first create a connection object that represents the database and then optionally you can create a
cursor object, which will help you in executing all the SQL statements.

Python SQLite Database Connection

Use the following steps to connect to SQLite

1. Import sqlite3 module

import sqlite3 statement imports the sqlite3 module in the program.

Using the classes and methods defined in the sqlite3 module we can communicate with the SQLite database.

2. Use the connect() method

Use the connect() method of the connector class with the database name.

To establish a connection to SQLite, you need to pass the database name you want to connect.

If you specify the database file name that already presents on the disk, it will connect to it.

But if your specified SQLite database file doesn’t exist, SQLite creates a new database for you.

This method returns the SQLite Connection Object if the connection is successful.

3. Use the cursor() method

Use the cursor() method of a connection class to create a cursor object to execute SQLite command/queries

from Python.

Cursor Object
It is an object that is used to make the connection for executing SQL queries. It acts as middleware between SQLite
database connection and SQL query. It is created after giving connection to SQLite database.

Syntax: cursor_object=connection_object.execute(“sql query”);

4. Use the execute() method

The execute() methods run the SQL query and return the result.

5. Extract result using fetchall()

Use cursor.fetchall() or fetchone() or fetchmany() to read query result.

6. Close cursor and connection objects

use cursor.clsoe() and connection.clsoe() method to close the cursor and SQLite connections after

your work completes

7. Catch database exception if any that may occur during this connection process.

3.2.1 connect () and execute() methods.

sqlite3.connect(database [,timeout ,other optional arguments])

This API opens a connection to the SQLite database file. You can use ":memory:" to open a database connection to a database
that resides in RAM instead of on disk. If database is opened successfully, it returns a connection object.

When a database is accessed by multiple connections, and one of the processes modifies the database, the SQLite database is
locked until that transaction is committed. The timeout parameter specifies how long the connection should wait for the lock to go
away until raising an exception. The default for the timeout parameter is 5.0 (five seconds).

If the given database name does not exist then this call will create the database. You can specify filename with the required path
as well if you want to create a database anywhere else except in the current directory.

program : connection.py

connection.execute(sql [, optional parameters])

This routine is a shortcut of the above execute method provided by the cursor object and it creates an intermediate cursor object
by calling the cursor method, then calls the cursor's execute method with the parameters given.

• Execute the query using a con.execute(query)

• program : create_table.py

3.2.2 Single row and multi-row fetch (fetchone(), fetchall())

The sqlite3.Cursor class is an instance using which you can invoke methods that execute SQLite

statements, fetch data from the result sets of the queries. You can create Cursor object using

the cursor() method of the Connection object/class.

Example

import sqlite3

#Connecting to sqlite

conn = sqlite3.connect('example.db')

#Creating a cursor object using the cursor() method

cursor = conn.cursor()

Methods

Following are the various methods provided by the Cursor class/object.

Sr.No Method & Description

1 execute()

This routine executes an SQL statement. The SQL statement may be parameterized (i.e.,

placeholders instead of SQL literals). The psycopg2 module supports placeholder using %s sign

For example:cursor.execute("insert into people values (%s, %s)", (who, age))

2 executemany()

This routine executes an SQL command against all parameter sequences or mappings found in

the sequence sql.

3 fetchone()

cursor.fetchone() method returns a single record or None if no more rows are available.

OR

This method fetches the next row of a query result set, returning a single sequence, or None

when no more data is available.

Program : Fetch_one.py

4 fetchmany()

This routine fetches the next set of rows of a query result, returning a list. An empty list is

returned when no more rows are available. The method tries to fetch as many rows as indicated

by the size parameter.

5 fetchall()

This routine fetches all (remaining) rows of a query result, returning a list. An empty list is

returned when no rows are available.

Program : Fetch_all.py

Fetch all rows from database table using cursor’s fetchall()

Now, let see how to use fetchall to fetch all the records. To fetch all rows from a database table, you need to

follow these simple steps: –

• Create a database Connection from Python. Refer Python SQLite connection, Python MySQL connection, Python

PostgreSQL connection.

• Define the SELECT query. Here you need to know the table and its column details.

• Execute the SELECT query using the cursor.execute() method.

• Get resultSet (all rows) from the cursor object using a cursor.fetchall().

• Iterate over the ResultSet using for loop and get column values of each row.

• Close the Python database connection.

• Catch any SQL exceptions that may come up during the process.

•

3.2.3 Select, Insert, update, delete using execute () method.

• insert_record.py

• select.py

• update.py

3.2.4 commit () method.

